Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; 19(3): e202301004, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38102804

RESUMO

Dihydroquinazolinone (DHQZ) has recently been harnessed as a ketone-derived pro-aromatic reagent extensively employed in (metalla)photoredox reactions as versatile group transfer agents. In this work, we outline a column chromatography-free protocol for the multigram-scale synthesis of pro-aromatic DHQZs as well as its use in a gram-scale nickel/photoredox dual-catalyzed cross-coupling in single-batch, photoflow, and simultaneous multiple smaller batches. While the single-batch approach leveraged moderate yields, a simple plug-flow photoreactor also exhibited amenable productivity (up to 45 % yield) despite the use of a heterogeneous base. Meanwhile, performing the metallaphotoredox-catalyzed reaction in multiple smaller batches in an improvised photoreactor facilitated high yields of up to 59 % and good reproducibility, implying a convenient alternative in the absence of photoflow setups.

2.
J Am Chem Soc ; 145(34): 19049-19059, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37589099

RESUMO

Given the importance and beneficial characteristics of decorated azetidines in medicinal chemistry, efficient strategies for their synthesis are highly sought after. Herein, we report a facile synthesis of the elusive all-carbon quaternary-center-bearing azetidines. By adopting a well-orchestrated polar-radical relay strategy, ring strain release of bench-stable benzoylated 1-azabicyclo[1.1.0]butane (ABB) can be harnessed for nickel-catalyzed Suzuki Csp2-Csp3 cross-coupling with commercially available boronic acids in broad scope (>50 examples), excellent functional group tolerance, and gram-scale utility. Preliminary mechanistic studies provided insights into the underlying mechanism, wherein the ring opening of ABB with a catalytic quantity of bromide accounts for the conversion of ABB into a redox-active azetidine, which subsequently engages in the cross-coupling reaction through a radical pathway. The synergistic bromide and nickel catalysis could intriguingly be derived from a single nickel source (NiBr2). Application of the method to modify natural products, biologically relevant molecules, and pharmaceuticals has been successfully achieved as well as the synthesis of melanocortin-1 receptor (MC-1R) agonist and vesicular acetylcholine transporter (VAChT) inhibitor analogues through bioisosteric replacements of piperidine with azetidine moieties, highlighting the potential of the method in drug optimization studies. Aside from the synthesis of azetidines, we demonstrate the ancillary utility of our nickel catalytic system toward the restricted Suzuki cross-coupling of tertiary alkyl bromides with aryl boronic acids to construct all-carbon quaternary centers.

3.
J Org Chem ; 87(5): 3799-3803, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35020395

RESUMO

The C-S activation and sulfur removal from native thiols is challenging, which limits their application as feedstock materials in organic synthesis despite their natural abundance. Herein, we introduce a per-/polyfluoroaryl moiety, which serves as a redox-active scaffold, into sp3-hybridized thiols to activate the C-S bond. Using a Ni catalyst with MgBr2 as an additive, the S group can be removed to yield an aliphatic radical that can react with an aryl halide in a reductive cross-coupling.


Assuntos
Compostos de Sulfidrila , Enxofre , Catálise , Estrutura Molecular , Oxirredução , Compostos de Sulfidrila/química
4.
Org Lett ; 24(1): 85-89, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-34913706

RESUMO

Herein we report ketones as feedstock materials in radical cross-coupling reactions under Ni/photoredox dual catalysis. In this approach, simple condensation first converts ketones into prearomatic intermediates that then act as activated radical sources for cross-coupling with aryl halides. Our strategy enables the direct benzylation/benzoylation of (hetero)arenes under mild reaction conditions with high functional group tolerance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...